

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 47 (2006) 6591–6594

A new method for the synthesis of carba-sugar enones (gabosines) using a mercury(II)-mediated opening of 4,5-cyclopropanated pyranosides as the key-step \overline{a}

Antonino Corsaro,^{a,*} Venerando Pistarà,^a Giorgio Catelani,^b Felicia D'Andrea,^b Roberto Adamo^{a,†} and Maria Assunta Chiacchio^a

^a Dipartimento di Scienze Chimiche, Università degli Studi di Catania, viale A. Doria 6, Catania 95125, Italy
^b Dipartimento di Chimica Biogramica e Biofarmacia, Università degli Studi di Pisa, via Bonanno 33, Pisa 561 ^bDipartimento di Chimica Bioorganica e Biofarmacia, Università degli Studi di Pisa, via Bonanno 33, Pisa 56126, Italy

> Received 9 June 2006; revised 6 July 2006; accepted 6 July 2006 Available online 31 July 2006

Abstract—The stereoselective transformation of the cyclopropyl derivative 2, stereoselectively obtained with the Simmons–Smith reaction of methyl 2,6-di-O-benzyl-a-L-threo-hex-4-enopyranoside (1), into gabosines and deoxy-carbahexoses is described. The treatment of 2 with mercuric trifluoroacetate in dry methanol gives the organomercuric chloride 3, which by demercuration with lithium aluminum hydride affords the 4-C-deoxy-4-methyl-1,5-bis-glycoside 4. The acid hydrolysis of 4 produces a mixture of the two diastereoisomeric 2-methyl-cyclohex-2-enones 6 and 7, catalytically reduced to carba-sugars 10 and 11. Structures and stereochemistry of all isolated compounds were determined by 1D and 2D NMR experiments. © 2006 Elsevier Ltd. All rights reserved.

McCasland et al.^{1a} and Ogawa and Suami^{1b} introduced pseudo-sugars and carba-sugars terms, respectively, to indicate a class of carbocyclic analogues of monosaccharides containing a methylene group in the place of the pyranose ring oxygen atom and showing very important biological activities. Particularly, trihydroxylated cyclohexanone and cyclohexenone carba-sugars, named gabosines, were isolated from Streptomyces strains by chemical screenings in the search of new secondary metabolites from natural sources.^{[2](#page-2-0)} Gabosines bearing a methyl substituent, were detected, isolated and structurally characterized, but initially no biological activity could be found for them. Later, a variety of biological activities such as plant growth regulating effects, 3 and inhibition of glyoxalase- I^4 I^4 and glycosidases^{[5](#page-2-0)} were found. Recently, Thiericke and co-workers 6 discovered weak

0040-4039/\$ - see front matter © 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.07.023

DNA-binding properties for A, B, F, N, and O gabo-sines (Fig. 1) by their so-called biomolecular screening.^{[7](#page-2-0)}

Because of their interesting biological activities, the synthesis of these compounds has stimulated a considerable interest from organic chemists, who have followed synthetic strategies involving the transformation of carbohydrates to carbocycles^{8a-c} and chemical or enzymatic elaboration of existing carbocycles.^{8d-h} Furthermore, gabosines reported in [Scheme 1](#page-1-0) could be devised as direct chemical precursors of 6-deoxy-carba-pyranose derivatives, such as carba-fucopyranose, a potential

Keywords: 4,5-Cyclopropanated sugars; Intramolecular aldol condensation; Gabosines; 6-Deoxy-5a-carba-hexopyranosides.

 $*$ Part 21 of the series, 'Chemical Valorisation of Milk-Derived Carbohydrates'; for part 20, see Ref. [11.](#page-2-0)

^{*} Corresponding author. Tel.: +39 095 7385017; fax: +39 095 580138; e-mail: acorsaro@unict.it

⁻Present address: Bijvoet Center, Department of Bio-organic Chemistry, Utrecht University Padualaan 8, 3584 CH Utrecht, The Netherlands. The structures of selected gabosines. Figure 1. Structures of selected gabosines.

Scheme 1. Reagents and conditions: (a) CH_2I_2 , Et_2Zn , Et_2O ; (b) $Hg(OCOCF_3)_2$, dry CH_3OH , rt then NaCl/H₂O; (c) NaBH₄, THF, rt; (d) CF₃COOH, CH₃CN/H₂O, rt and (e) MCPBA, MeOH.

candidate for the inhibition of oligosaccharide process-ing enzymes.^{[9](#page-2-0)}

Through a project on the elaboration of unsaturated intermediated derivatives from lactose,^{[10](#page-2-0)} we have recently studied the cyclopropanation reactions of hex-4 enopyranosides, such as 1, explaining the stereochemical aspect of the reaction.^{[11](#page-2-0)}

In this letter, we describe, for the first time, a sequence of reactions which allows the stereoselective transformation of a cyclopropyl derivative into gabosines and 6-deoxycarbahexoses. To our best knowledge, until now, there are no examples which use a cyclopropanation reaction to transform an hexopyranose into a carba-sugar.

The cyclopropyl derivative 2 was obtained in a near quantitative yield and with a high stereoselectivity^{[11](#page-2-0)} in the Simmons–Smith^{[12](#page-2-0)} reaction of 4-hexenopyranoside 1 with diethyl zinc and diiodomethane, and was treated with mercuric trifluoroacetate in dry methanol to give, after exchange with NaCl, the organomercuric chloride 3 with high yield.^{[13](#page-2-0)} It is noteworthy that the cyclopropane ring-opening takes place with the same high, if not complete, regio- and stereoselectivity previously reported for the methanolysis of analogous epoxide of 1 leading to 8^{14a} (Scheme 1). The crude reaction mixture was used without purification in the reductive demercuration with lithium aluminium hydride to afford, after flash-chromatography, the 4-C-deoxy-4-methyl-1,5-bisglycoside 4^{15} 4^{15} 4^{15} in 71% yield over three steps from 1. The structure and the stereochemistry of compound 4 were deduced from its ${}^{1}H$ and ${}^{13}C$ NMR, COSY and NOE spectra. Particularly, in the ${}^{1}H$ NMR spectrum of 4, diagnostic signals were doublet $(J_{4,Me} = 7.0 \text{ Hz})$ centred at 0.98 ppm for the methyl protons in 4-position, and a double quartet for the H-4 proton at 2.44 ppm $(J_{3,4} =$ 5.0 Hz).

When the bis-glycoside 4 was submitted to the same hydrolytic conditions $(CF_3COOH/H_2O/CH_3CN$ 0.1:0.5:1, rt, 12 h) as that reported for the transformation of the bis-glycoside 8 into the corresponding 1,5 dicarbonyl-hexose 9, [14](#page-2-0) a mixture of the two diastereoisomeric 2-methyl-cyclohex-2-enones 6^{16} 6^{16} 6^{16} and 7^{17} 7^{17} 7^{17} was obtained, which were isolated, after flash-chromatography, in 65 and 20% yield, respectively. It could be reasonably supposed that, in the acid reaction medium, after the expected formation of the dicarbonyl compound 5, a fast intramolecular aldol condensation takes place, affording two diastereoisomeric cyclohexanone intermediates, which subsequently loose water with high regiochemistry from 2,3-position, to give the α , β -unsaturated ketones 6 and 7, the structure and stereochemistry of which determined by 1D and 2D (NOE, COSY and HETCOR) NMR experiments. The 1 H NMR spectrum of 6^{16} 6^{16} 6^{16} shows a double doublet centred at 6.58 ppm for the unsaturated H-3 proton which couples with methyl protons at 1.82 ppm (d, $J = 1.5$ Hz) and H-4 proton at 4.24 ppm $(J = 2.5 \text{ Hz})$. The H-6 proton appears as a doublet at 3.85 ppm with a large $J_{\text{ax/ax}} =$ 11.0 Hz because of the coupling with the adjacent H-5 proton at 4.04 ppm (dd, $J_{\text{ax/eq}} = 8.0 \text{ Hz}$), which in its turn couples with the H-4 proton. NOE experiments confirmed the assigned stereochemistry, showing, in particular, an enhancement (6%) of the H-6 signal upon irradiation of the H-4 proton, and vice versa. The ${}^{1}H$ NMR spectrum of $7¹⁷$ $7¹⁷$ $7¹⁷$ corresponding to the 2,6-di-Obenzyl derivative of Gabosine A, shows a double doublet $(J = 1.5$ and 4.0 Hz) centred at 6.66 ppm for the unsaturated H-3 proton which couples with methyl protons at 1.74 ppm and H-4 proton at 4.33 ppm. A doublet with a $J_{\text{ax/eq}} = 8.0 \text{ Hz}$ centred at 4.06 ppm is apparent for the H-6 proton owing to the coupling with the adjacent H-5 proton which in its turn resonates as double doublet at 4.17 ppm. Also in this case, NOE experiments are in agreement with the assigned stereochemistry, the irradiation of the H-4 proton giving rise to enhancements of 4.5 and 3.6% of the H-5 and H-6 signals, respectively, and vice versa. When the hydrolysis of bis-glycoside 4 was carried out by using a catalytic amount of trifluoroacetic acid, it stops at the dicarbonyl compound 5 as pointed out by the ${}^{1}\hat{H}$ NMR spectrum of the unprocessed reaction mixture, which does not show any evidence of condensation products, but signals for the anomeric protons in the 5.20–5.70 ppm range are characteristic of a complex mixture of tautomeric forms in solution, which will be the object of further studies.

Scheme 2. Reagents and conditions: (a) Pd/C, H_2 , MeOH; and (b) Raney/Ni, H₂, EtOH.

With the aim of chemically supporting the structure of 6, it was reduced with hydrogen and Pd/C to give, as unique product, the tri-hydroxy-methylcyclohexanone 10 ,^{[18](#page-3-0)} a diastereoisomer of the naturally occurring Gabo-sines B, F and O (Scheme 2).^{[19](#page-3-0)} Furthermore, the catalytic hydrogenation of 6 with Ni-Raney determines the complete reduction of the conjugate system, leading with high stereoselectivity to a partially debenzylated carba-sugar isolated with 71% yield and identified (NMR) as the benzyl $5a$ -carba- β -L-fucopyranoside 11^{20} 11^{20} 11^{20} (Scheme 2). The position of the benzyl group was unequivocally assured with NOE experiments; in particular, the irradiation of $CH₂$ protons determines the enhancement of the equatorial H-7 proton (2.1%) and H-2 proton signals (1.5%), and vice versa.

In conclusion this letter describes a new route for the preparation of 6-deoxy-carbasugars from a cyclopropanated D-galactose derivative. The key steps of this synthesis are the stereocontrolled cyclopropanation of 4-hexenopyranoside, the stereoselectivity of the mercury-mediated cyclopropane ring opening and the stereoselective reduction of the carbonyl group, which allows to obtain different isomers of the title compound in a stereocontrolled manner.

Recently, this reaction route is carried out with a cyclopropanated lactose analogue to 2 ¹¹ preliminary results are like those reported in this letter for the monosaccharide derivative, and therefore they outline a new route for the stereoselective transformation of lactose into new and biologically interesting carba-sugars, expanding, thus, the series of applications directed towards an economical valorisation of this natural disaccharide, a by-product of the cheese-industry. The results of these studies will be the object of a next publication.

Acknowledgements

The authors are grateful to MIUR (Ministero dell'Istruzione, dell'Universita` e della Ricerca, Roma) for partial financial support in the frame of the COFIN 2004 program.

References and notes

- 1. (a) McCasland, G. E.; Furuta, S.; Durham, L. J. J. Org. Chem. 1966, 31, 1516–1521; (b) Suami, T.; Ogawa, S. Adv. Carbohydr. Chem. Biochem. 1990, 48, 21–90.
- 2. Bach, G.; Breiding-mack, S.; Grabley, S.; Hammann, P.; Hütter, K.; Thiericke, R.; Uhr, H.; Wink, J.; Zeeck, A. Liebigs Ann. Chem. 1993, 241–250.
- 3. Grabley, S.; Wink, J.; Hammann, P.; Giani, C.; Huetter, K.; Zeeck A. (Hoechst A. G., Fed. Rep. Ger.), PCT Int. Appl., PIXXD2 WO 8912038, 1989, Chem. Abstr., 1990, 113, 22211y.
- 4. (a) Takeuchi, T.; Chimura, H.; Hamada, M.; Umezawa, H. J. Antibiot. 1975, 28, 737–742; (b) Douglas, K. T.; Shinkai, S. Angew. Chem., Int. Ed. Engl. 1985, 24, 31–44.
- 5. (a) Iwasa, T.; Yamamoto, H.; Shibata, M. J. Antibiot. 1970, 23, 595–602; (b) Suami, T.; Ogawa, S.; Chida, N. J. Antibiot. 1980, 33, 98–102.
- 6. Grabley, S.; Thiericke, R.; Zeeck, A. In Drug Discovery from Nature; Grabley, S., Thiericke, R., Eds.; Springer: Berlin, 1999; pp 124–148.
- 7. (a) Tang, Y.-Q.; Maul, C.; Hofs, R.; Sattler, I.; Feng, S.; Zeeck, A.; Thiericke, R. Eur. J. Org. Chem. 2000, 149–153; (b) Hofs, R.; Schoppe, S.; Thiericke, R.; Zeeck, A. Eur. J. Org. Chem. 2000, 1883–1887.
- 8. (a) Ferrier, R. J.; Middleton, S. Chem. Rev. 1993, 93, 2779–2831; (b) Lubineau, A.; Billault, I. J. Org. Chem. 1998, 63, 5668–5671; (c) Dalko, D. I.; Sinaÿ, P. Angew. Chem., Int. Ed. 1999, 38, 773–777; (d) Shing, T. K. M.; Li, T. Y.; Kok, S. H.-L. J. Org. Chem. 1999, 64, 1941–1946; (e) Banwell, M. G.; Bray, A. M.; Wong, D. J. New J. Chem. 2001, 25, 1351–1354; (f) Shinada, T.; Fuji, T.; Ohtani, Y.; Yoshida, Y.; Ohfune, Y. Synlett 2002, 8, 1341–1343; (g) Ramana, G. V.; Rao, B. V. Tetrahedron Lett. 2005, 46, 3049–3051; (h) Alibes, R.; Bayon, P.; De March, P.; Figueredo, M.; Font, J.; Marjanet, G. Org. Lett. 2006, 8, 1617-1620.
- 9. Wilkox, C. S.; Gaudino, J. J. J. Am. Chem. Soc. 1986, 108, 3102–3104.
- 10. Catelani, G.; Corsaro, A.; D'Andrea, F.; Mariani, M.; Pistarà, V.; Vittorino, E. Carbohydr. Res. 2003, 338, 2349-3258.
- 11. Corsaro, A.; Chiacchio, U.; Adamo, R.; Pistarà, V.; Rescifina, A.; Romeo, R.; Catelani, G.; D'Andrea, F.; Mariani, M.; Attolino, E. Tetrahedron 2004, 60, 3787– 3795.
- 12. Simmons, H. E.; Cairns, T. L.; Vladuchik, S. A.; Hoiness, C. M. Org. React. 1973, 20, 1–131.
- 13. Methyl 2,6-di-O-benzyl-4-deoxy-5-C-methoxy-4-(methyl $chloromercurio$ - β - D -galactopyranoside 3: syrup, 98% yield, $[\alpha]_D^{25}$ +110.5 (c 0.1, CHCl₃). Selected NMR data: ¹H $(500 \text{ MHz}, \text{CDCl}_3) \delta$: 1.29 (t, 1H, $J = 12.5 \text{ Hz}, \text{H}_{7a}$), 1.54 (dd, 1H, $J = 5.5$, 12.5 Hz, H_{7b}), 2.58 (dt, 1H, $J = 5.5$, 12.5 Hz, H₄), 3.21 (dd, 1H, $J = 7.5$, 10.0 Hz, H₂), 3.23 (s, 3H, C₅OCH₃), 4.32 (dd, 1H, $J = 5.0$, 10.0 Hz, H₃), 4.45 (d, 1H, $J = 7.5$ Hz, H₁); ¹³C (50 MHz, CDCl₃) δ : 20.11 (C₇), 42.65 (C₄), 48.37 (C₅–OCH₃), 56.91 (C₁–OCH₃), 65.37 (C_6) , 66.97 (C_3) , 78.52 (C_2) , 101.07 (C_1) , 102.47 (C_5) .
- 14. (a) Barili, P. L.; Berti, G.; Catelani, G.; D'Andrea, F. Gazz. Chim. Ital. 1992, 122, 135-142; (b) Pistarà, V.; Barili, P. L.; Catelani, G.; Corsaro, A.; D'Andrea, F.; Fisichella, S. Tetrahedron Lett. 2000, 41, 3253–3256.
- 15. Methyl 2,6-di-O-benzyl-4-deoxy-5-C-methoxy-4-methyl-b-*D-galactopyranoside* **4**: syrup, 96% yield, $[\alpha]_D^{25}$ -26.7 (*c* 0.3, CHCl₃). Selected NMR data: ¹H (500 MHz, CDCl₃) δ : 0.98 (d, 3H, $J = 7.0$ Hz CH₃), 2.44 (dq, 1H, $J = 5.0, 7.0$ Hz, H₄), 2.58 (d, 1H, $J = 2.5$ Hz, OH), 3.26 (s, $3H, C_5-OCH_3$), 3.33 (dd, 1H, $J = 8.0$, 9.5 Hz, H_2), 3.53 (s, 3H, C₁–OCH₃), 4.17 (ddd, 1H, J = 2.5, 5.0, 9.5 Hz, H₃), 4.49 (d, 1H, J = 8.0 H₁); ¹³C (125 MHz, CDCl₃) δ : 8.39 (CH₃), 38.74 (C₄), 47.95 (C₅–OCH₃), 56.70 (C₁–OCH₃), 65.65 (C₆), 68.92 (C₃), 79.58 (C₂), 101.01 (C₁), 101.65 (C₅).
- 16. (4R,5S,6R)- and (4S,5R,6S)-4,6-bis(benzyloxy)-5-hydr $oxy-2-methylcyclohex-2-enone$ 6: syrup, 65% yield, $[\alpha]_D^{25}$ $+7.7$ (c 0.5, CHCl₃). Selected NMR data: ¹H (500 MHz, CDCl₃) δ : 1.82 (dd, 3H, $J = 1.5$, 2.5 Hz, CH₃), 3.85 (d, 1H, $J = 11.0$ Hz, H₆), 4.04 (dd, 1H, $J = 8.0$, 11.0 Hz, H₅), 4.24

(dq, $J = 2.5$, 8.0 Hz, H₄), 6.58 (dd, 1H, $J = 1.5$, 2.5 Hz, H₃); ¹³C (125 MHz, CDCl₃) δ : 15.16 (CH₃), 29.21, 73.14 and 73.99 (CH₂), 76.55, 77.80, 82.60 (C₄, C₅ and C₆), 135.05 (C₂), 142.85 (C₃), 197.04 (C=O).

- 17. (4R,5R,6R)- and (4S,5S,6S)-4,6-bis(benzyloxy)-5-hydr $oxy-2-methylcyclohex-2-enone$ 7: syrup, 20% yield, $[\alpha]_D^{25}$ -89.7 (c 0.8, CD₃CN). Selected NMR data: ¹H (500 MHz, CDCl₃) δ : 1.74 (t, 3H, $J = 1.5$ Hz, CH₃), 4.06 (d, 1H, $J = 8.0$ Hz, H₆), 4.17 (m, 1H, H₅), 4.33 (ddd, 1H, $J = 1.5$, 2.5, 4.0 Hz, H₄), 6.66 (dd, 1H, $J = 1.5$, 4.0 Hz, H₃); ¹³C $(125 \text{ MHz}, \text{CDCl}_3)$ δ : 15.58 (CH₃), 29.68, 71.42, 72.61 $(CH₂), 72.99, 73.49$ (CH₂), 80.18, 136.39 (C₂), 139.02 (C₃), 196.63 (C=O).
- 18. (2R,3S,4R,6R)- and (2S,3R,4S,6S)-2,3,4-trihydroxy-6 *methylcyclohexanone* 10: syrup, 92% yield, $[\alpha]_D^{25}$ –55.6 (c) 1.1, CHCl₃). Selected NMR data: ¹H (500 MHz, CD₃OD) δ : 1.04 (d, 1H, $J = 6.5$ Hz, CH₃), 1.20 (ddd, 1H, $J = 5.0$, 5.5, 13.5 Hz, H_{5b}), 2.13 (ddd, 1H, $J = 5.5$, 12.5, 13.5 Hz, H_{5a}), 2.61 (ddd, 1H, $J = 5.5$, 6.5, 12.5 Hz, H₆), 3.21 (d, 1H, $J = 9.5$ Hz, H₃), 3.85 (m, 1H, $J = 9.5$ Hz, H₄), 4.03 (dd, 1H, $J = 0.9$, 9.5 Hz, H₂); ¹³C (50 MHz, CD₃OD) δ : 13.81 (CH3), 38.99 (CH2), 40.13, 71.77, 79.37, 81.39, 194.6 $(C=0)$.
- 19. The generally adopted numbering for carbacycles of naturally occurring derivatives or their analogues does

not always follow the standard prioritisation rules. We have attributed ([Scheme 2](#page-2-0)) to compounds 6 and 10 the numbering system used in the literature for Gabosine analogues (Ref. [8](#page-2-0)), and that used for carba-sugar derivatives for compound 11 (Ref. 21).

- 20. Benzyl 5a-carba-β-L-fucopyranoside 11: syrup, 71% yield, $[\alpha]_D^{25}$ +7.70 (c 1.3, CHCl₃). Selected NMR data: ¹H $(500 \text{ MHz}, \text{CD}_3\text{CN}) \delta: 0.95 \text{ (d, 1H, } J = 6.8 \text{ Hz, } CH_3), 1.34$ (dd, 1H, $J = 11.5$, 12.6 Hz, H_{7ax}), 1.54 (m, 1H, H₅), 1.71 (dt, 1H, $J = 3.8$, 4.6, 12.6 Hz, H_{7eq}), 3.20 (ddd, 1H, $J = 4.6, 9.5, 11.5$ Hz, H₁), 3.23 (dd, 1H, $J = 3.0, 9.5$ Hz, H₃), 3.48 (t, 1H, $J = 9.5$ Hz, H₂), 3.60 (br t, 1H, $J = 3.0$ Hz, H₄); ¹³C (50 MHz, CDCl₃) δ : 17.3 (CH₃), 30.9 (CH2), 31.4, 71.1, 72.5, 74.2, 74.9, 80.1. For previous synthesis of 5a-carbafucopyranoside derivatives, see Ref. 21.
- 21. (a) Carpintero, M.; Jaramillo, C.; Fernandez-Mayoralas, A. Eur. J. Org. Chem. 2000, 1285–1296; (b) Carpintero, M.; Bastida, A.; Garcia-Junceda, E.; Jimenez-Barbero, J.; Fernandez-Mayoralas, A. Eur. J. Org. Chem. 2001, 4127– 4135; (c) Calderon, F.; Carpintero, M.; Garcia-Junceda, E.; Fernandez-Mayoralas, A.; Bastida, A. Lett. Org. Chem. 2005, 2, 247–251; (d) Verduyn, R.; van Leeuwen, S. H.; van der Marel, G. A.; van Boom, J. H. Rec. Trav. Chim. Pays-Bas 1996, 115, 67–71.